

openlab II technical activity overview

Sverre Jarp CERN openlab CTO 15 November 2007 PARTNERS

(intel) ORACLE

CONTRIBUTORS

CERN openlab

- CERN-IT department's main R&D focus
- Framework for collaboration with industry
- Evaluation, integration, validation
 - of cutting-edge technologies that can serve the LHC Computing Grid (LCG)
- Sequence of 3-year agreements
 - 2003 2005: the "opencluster" project
 - 2006 2008: openlab Phase II with new projects:
 - Platform, Grid, databases, Network/Security

A few highlights from openIab-I

High performance testbed: the opencluster CERN **10GE WAN** connection openlab * GE connections to the backbone Network: 4 **ENTERASYS N7* * Enterasys X Series **36 Disk Server** 10 GE per node (dual P4, IDE disks, ~ 1TB disk space each) 10 GE per node 200 IA32 CPU Server **10GE** (dual 2.4 GHz P4, 1 GB mem. 1 GE per node **100 Itanium Server** (dual 1.3/1.5 GHz Itanium2, **2+ GB mem**) **IBM 12 Tape Server StorageTank STK 9940B** (28 TB)

High Througput Prototype (opencluster + LCG testbed)

64-bit memory addressing

With 32 bits, a PC can address 4 Gigabytes

- This is equivalent to the data that will come from the LHC detectors during a couple of seconds
- With 64 bits, a PC can address 18 Exabytes
 - This is equivalent to the data that would come from the LHC detectors during 100 years!

• CERN has converted all its base software to 64 bits:

- ROOT (Data analysis framework)
- Geant4 (Physics simulation framework)
- CLHEP (C++ Class Library)
- CASTOR (CERN Hierarchical Storage Manager)
- LHC experiments are now preparing their entire production software environment (hundreds of libraries) for this exciting capability

Computational Fluid Dynamics

- Based on Itanium cluster with Infiniband switches from Voltaire
- CFD calculations:
 - A numerical analysis of fluid flow, heat transfer and associated phenomena in LHC caverns
 - Reduces design and engineering costs by avoiding prototype studies
 - Calculation improved by almost an order of magnitude
 - From, for instance, one month to less than four days
 - Model dimensions increased from 0.5 to 3 M cells
- Very important contribution to all the LHC experiments
 - and others

Moving to openlab-II

Benchmarking

CERN and our community want:

- Best price for a given performance
 - Measured as "SPECint/CHF"
- Lowest "heat production"
 - Measured as "SPECint/watt"

- With Intel's multi-core systems, we have seen a considerable improvement in both
- Also, strong effort on optimization of jobs from the LHC collaborations
 - So far, profiling has been done on:
 - Simulation and reconstruction framework
 - Work on Event Filter in preparation

Compiler project

openlab

- Since most High Energy Physics programs are written in-house, compiler optimization translates directly into reduced cycle consumption per job
 - Millions of lines of source code
- openlab is working on several fronts to improve compilers:
 - Focusing on improving performance for C++ (preferred programming language for developing applications)
 - Helping ensure correctness of compilers
- This project is active since the beginning of openlab I
 - Both on Itanium (IA-64) and Intel-64 (x86-64)
 - Currently working on Intel C++ Compiler V.10
 - Also working with the GNU compiler community

Multicore/Manycore

Our "high throughput" computing model is maybe ideally suited:

- Independent processes can run on each core, provided that:
 - Main memory is added
 - Bandwidth to main memory remains reasonable
- Testing, so far, has been very convincing
 - Initially on Dual Core systems (Dempsey, Woodcrest, Montecito, etc.)
- Last November we were happy to be part of the first move to Quad core

– And we are ready to go further!

Virtualization

Virtualization:

- a technique for hiding the physical characteristics of computing resources from the way in which "clients" interact with those resources
- A great feature that CERN and High Energy Physics can exploit in Grid computing
 - Grids will be both more flexible and more secure when using virtualization
 - Large (multi-core) servers can be partitioned easily
 - ... and it will come at a low cost
- CERN openlab has been involved since 2004
 - Using an open source hypervisor (Xen)
- Now working with CERN's Grid Deployment team
 - Increasing security, flexibility, as well as developers' productivity
- Local developments:
 - Osfarm and Content Based Transfers (CBT)

CERN and Intel

CERN is strongly committed to the openlab collaboration:

- VIP visits
- Customer visits, testimonials
- Strong technical collaboration
 - Multi-core evolution, multithreaded programming
 - Thermal evolution (servers and data centres)
 - Benchmarking
 - Optimization
 - Compilers
 - Virtualization
- We are looking forward to continued innovation from Intel during the "decade of the LHC"
 - From now until 2017!

LHC Computing

People

Motivation

Innovation

BACKUP